Real-time Neural Radiance Caching for Path Tracing

Haizhao Dai 2022/12/01

Overview

- Path Tracing
- Real-time Ray Tracing
- ReSTIR & Radiance Caching
- Neural Radiance Caching + Fully Fused Neural Networks

Path Tracing (Kindly remind: CG HW4)

• Rendering equation describes the light transport:

•
$$L_o(p_1 \to p_0) = L_e(p_1 \to p_0) + \int_{\mathcal{H}^2} f(p_2 \to p_1 \to p_0) L_i(p_2 \to p_1) |\langle \mathbf{n}_{p_1}, \omega_i \rangle | d\omega_i$$

- Consider light transporting from another point p_2 : • $L_i(p_2 \rightarrow p_1) = L_e(p_2 \rightarrow p_1) + \int_{\mathcal{H}^2} f(p_3 \rightarrow p_2 \rightarrow p_1) L_i(p_3 \rightarrow p_2) |\langle \mathbf{n}_{p_2}, \omega_{ii} \rangle |d\omega_{ii}$
- Merge together, we complete the path tracing from p_2 to p_1 and to camera:

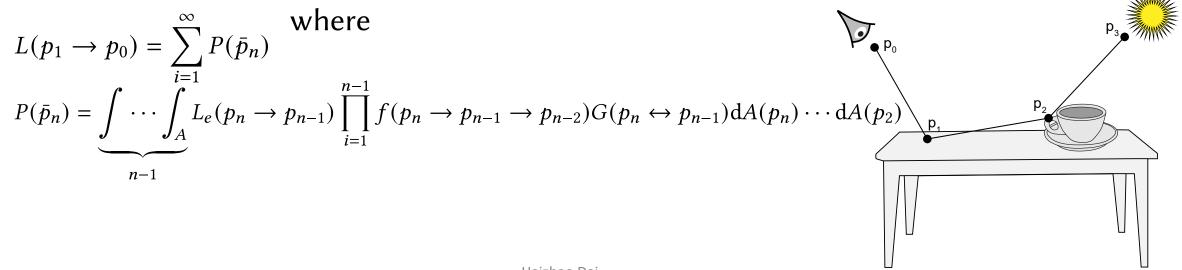
Path Tracing (Kindly remind: CG HW4)

• Directly sample from light sources (Next Event Estimation):

$$L(p_1 \to p_0) = L_e(p_1 \to p_0)$$

+ $\int_A f(p_2 \to p_1 \to p_0) L_e(p_2 \to p_1) G(p_2 \leftrightarrow p_1) dA(p_2)$
+ $\int_A f(p_2 \to p_1 \to p_0) \int_A f(p_3 \to p_2 \to p_1) L_e(p_3 \to p_2) G(p_3 \leftrightarrow p_2) G(p_2 \leftrightarrow p_1) dA(p_3) dA(p_2)$

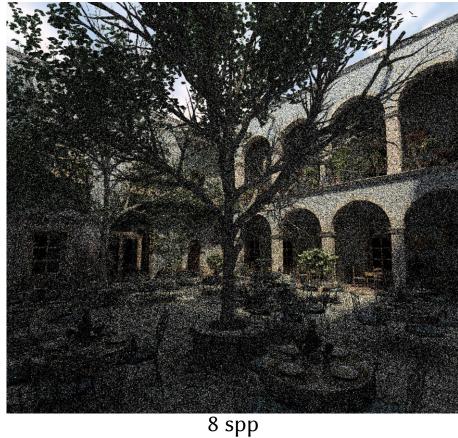
• This process can go on forever...



Source: Physically Based Rendering: From Theory To Implementation Third Edition. Pharr et al. 2018.

Real-time Ray Tracing

- What is the problem of the path tracing?
 - Extremely slow for ray-object intersection, huge number of sampling.
 - 1920 * 1080 * 1024 * 64 = 136 B / 398 M for vanilla NeRF.



1024 spp

Haizhao Dai

Source: Physically Based Rendering: From Theory To Implementation Third Edition. Pharr et al. 2018.

Real-time Ray Tracing

- Difficulties:
 - Everything should done in ~33 ms.
 - CUDA/GPU/rendering API/parallel computing.
 - Dynamic scene.
 - How to find the important lights in millions of light sources?
- Possible Solutions:
 - A data structure reducing the number of intersection Displacement Mapping BVH.
 - Find the optimal sampling strategy for each term of rendering equation ReSTIR.
 - Deep learning: Video frame interpolation/Super sampling DLSS.
 - Neural network + Reduce the number of path to trace NRC.

ReSTIR

• ReSTIR is short for Reservoir-based SpatioTemporal Importance Resampling.

Only aimed for direct illumination!

- Reservoir Sampling.
- Multi-importance Sampling + Resampled Importance Sampling.
- Spatial/Temporal/Visibility Reuse.

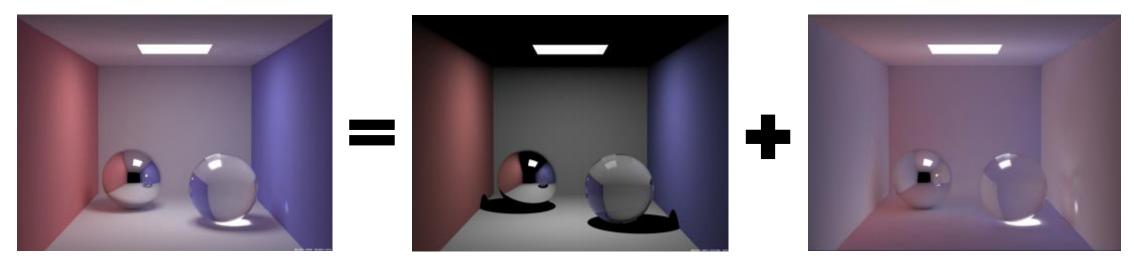
Striped-comparisons in 100 ms rendering: Light-BVH, Biased ReSTIR, Unbiased ReSTIR, Reference.

Haizhao Dai

Source: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. Bitterli et al. Siggraph 2020.

Irradiance Caching

• Irradiance at diffuse surface varies smoothly in the scene.



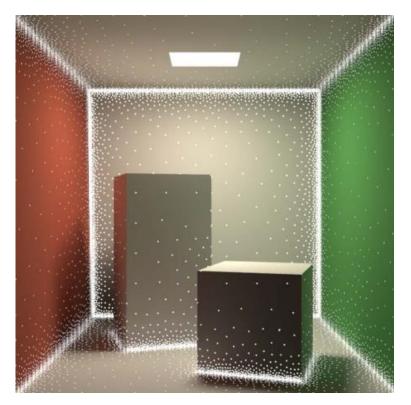
Global Illumination

Direct Illumination

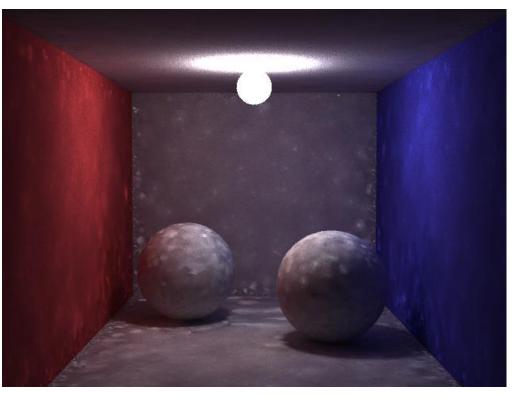
Indirect Illumination

Irradiance Caching

- Store the irradiance in a data structure.
- In pre-computation/During rendering.



Only aimed for indirect illumination!



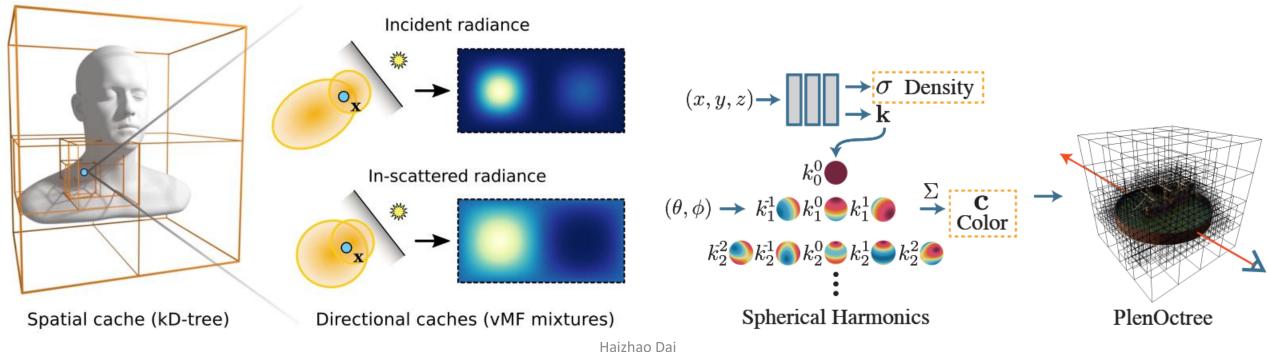
Result, raw HDR (no gamma correction).

Radiance Caching

• How about glossy surface?

Only aimed for indirect illumination!

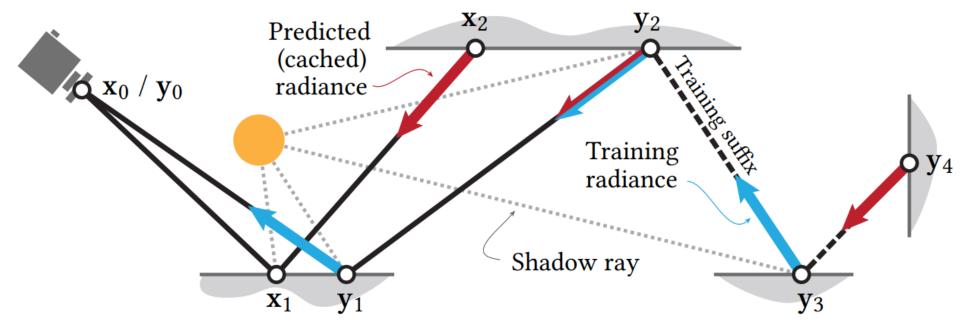
- Radiative quantities feature significant **spatial**, **directional**, and **temporal** correlations.
- Using directional function: Spherical Harmonics/Spherical Gaussian.
- Photon Mapping \rightarrow Hash Encoding!



Source: ① Volume Path Guiding Based on Zero-Variance Random Walk Theory. Herholz et al. Siggraph 2019. ② PlenOctrees for Real-time Rendering of Neural Radiance Fields. Yu et al. ICCV 2021.

NRC – Algorithm

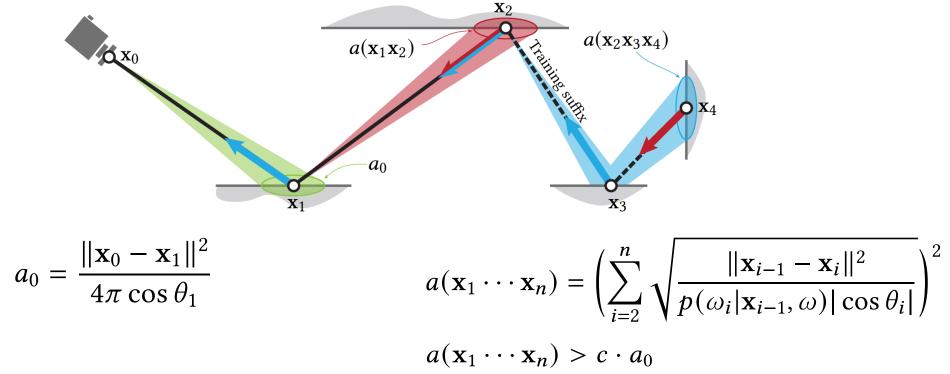
• Directly query indirect illumination from neural network.



- When to terminate the path?
- Online/Offline training? How is the training strategy?

NRC – Path Termination

• Once the area-spread become large enough to blur away the small scale inaccuracies of the cache.



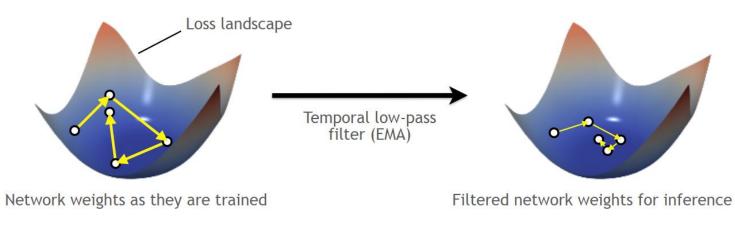
• Not all path are training path, only (2 - 3%).

NRC – Training Strategies

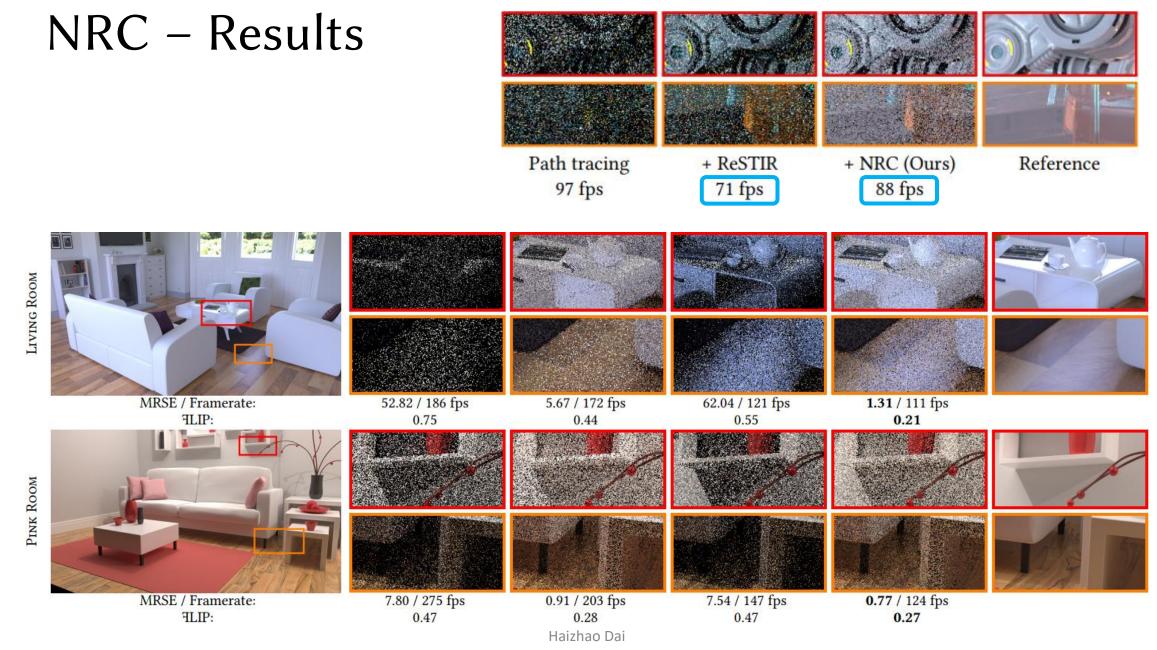
- Online training.
- All vertices on training paths are training data.
- Pros for NRC:
 - Dynamic content.
 - Robustness + predictable performance and resource consumption.
 - Bias-variance tradeoff.
 - Volume rendering.
- Cons for NRC:
 - Unseen scene point.
 - Biased! (Solved by Russian Roulette)

NRC – Details

- Input Encoding:
 - $L = f(x, \omega, n, r, \alpha, \beta)$
- Rendering: Flickering for aggressive optimization schedule.
 - Temporal low pass filter Exponential Moving Average.



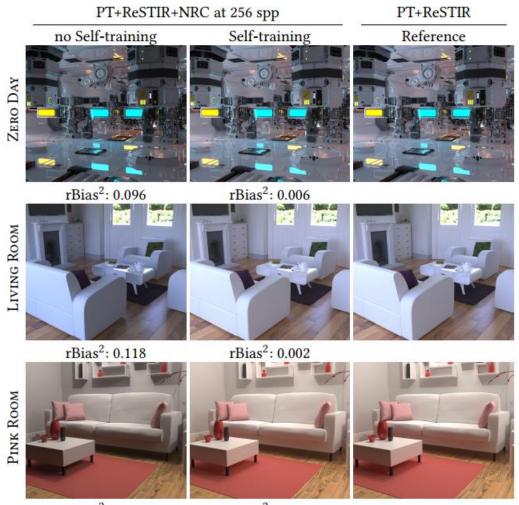
$$\bar{W}_t := \frac{1-\alpha}{\eta_t} \cdot W_t + \alpha \cdot \eta_{t-1} \cdot \bar{W}_{t-1} \quad \eta_t = 1-\alpha^2$$



Source: Real-time Neural Radiance Caching for Path Tracing. Mueller et al. Siggraph 2021.

NRC – Results

Carrie	Mathad	E	Time	MDCE	Curredou
Scene	Method	Frames	Time	MRSE	Speedup
Attic	PT+ReSTIR	7	92.5 ms	2.739	6.6×
	PT+ReSTIR+NRC	1	14.0 ms	2.727	
Bistro	PT+ReSTIR	8	110.7 ms	1.498	7.6×
	PT+ReSTIR+NRC	1	14.6 ms	1.407	
Classroom	PT+ReSTIR	145	2625 ms	5.882	172.7×
	PT+ReSTIR+NRC	1	15.2 ms	5.847	
Living Room	PT+ReSTIR	53	431.5 ms	1.379	49.6×
	PT+ReSTIR+NRC	1	8.7 ms	1.376	
Рікк Воом	PT+ReSTIR	10	66.9 ms	0.769	8.4×
	PT+ReSTIR+NRC	1	8.0 ms	0.765	
Zero Day	PT+ReSTIR	5	69.4 ms	3.799	6.1×
	PT+ReSTIR+NRC	1	11.3 ms	3.430	
Average	PT+ReSTIR	16.6	154.1 ms	2.037	13.6×
	PT+ReSTIR+NRC	1	11.3 ms	1.941	



rBias²: 0.137

rBias²: 0.002

Haizhao Dai

Source: Real-time Neural Radiance Caching for

In Sec.

Tracing. Mueller et al. Siggraph 2021.

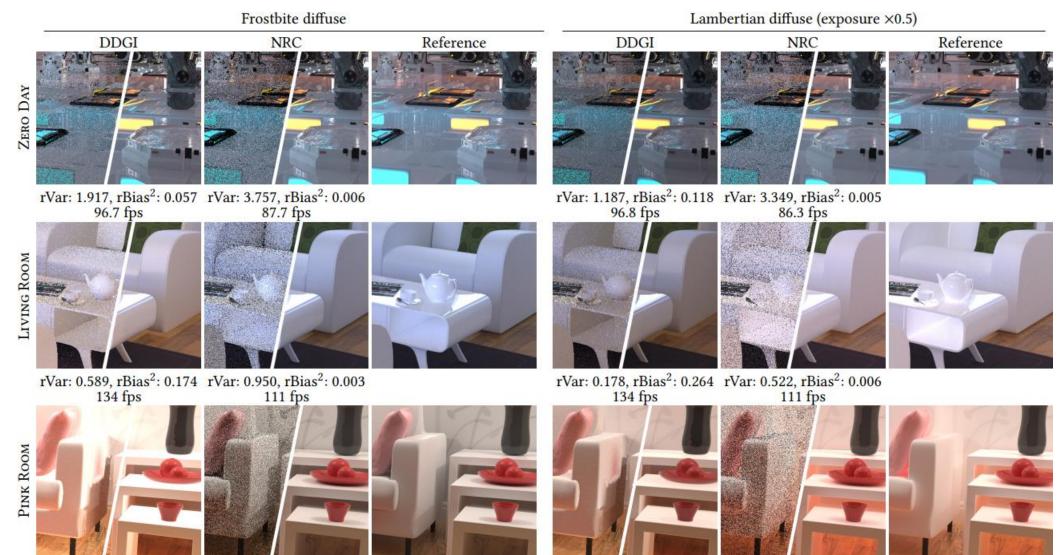
Haizhao Dai

Source: Real-time Neural Radiance Caching for

Tracing. Mueller et al. Siggraph 2021.

Haizhao Dai

NRC – Results



Haizhao Dai

rVar: 0.232, rBias2: 0.542 rVar: 1.297, rBias2: 0.008

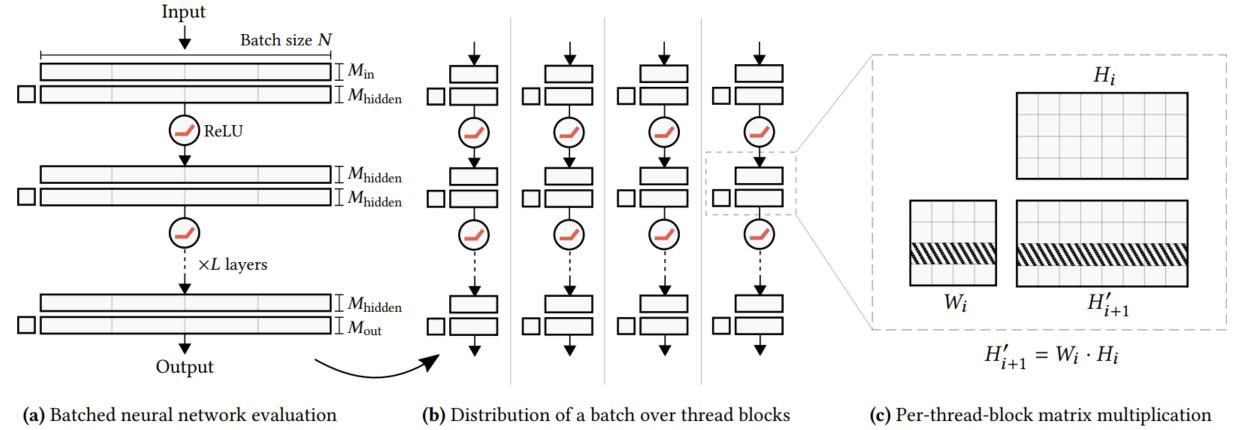
124 fps

144 fps

rVar: 0.394, rBias²: 3.836 rVar: 1.087, rBias²: 0.002 141 fps 124 fps

Fully Fused Neural Network

• A.K.A tiny-cuda-nn. Fully fused: implement nn as a GPU kernel.



Haizhao Dai

References

- Physically Based Rendering: From Theory To Implementation Third Edition. Pharr et al. 2018.
- Volume Path Guiding Based on Zero-Variance Random Walk Theory. Herholz et al. Siggraph 2019.
- PlenOctrees for Real-time Rendering of Neural Radiance Fields. Yu et al. ICCV 2021.
- Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. Bitterli et al. Siggraph 2020.
- Real-time Neural Radiance Caching for Path Tracing. Mueller et al. Siggraph 2021.
- Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. Mueller et al. Siggraph 2022 Best Paper.